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1 Introduction

Intertemporal price discrimination (IPD) is a widespread practice in airline and in many

other retail industries (Borenstein, 1989; Borenstein and Rose, 1994; Hayes and Ross, 1998;

Stavins, 2001). It consists to charge di¤erent prices for similar products, being price di¤er-

entials not explained by cost variations (Clerides, 2004).1 In oligopolistic contexts, scholars

usually suggest that IPD is usually explained in terms of search costs or product di¤erenti-

ation (Krouse, 1990; Chp. 7). Search costs limit the number of stores a consumer can visit,

reason why �rms charging high prices can stay on the market (McMillan and Rothschild,

1994). Search theory explains price dispersed equilibria with many �rms, but it is less con-

vincing when the number of sellers is low. For the rest, product di¤erentiation explains price

discrimination even in duopoly (Holmes, 1989; Katz, 1984; Armstrong and Vickers, 2001;

Rochet and Stole, 2002; Dessein, 2003; Alderighi, 2007).

In disagreement to previous explanations, Dana (1998,1999) showed that intertemporal

price discrimination can result in absence of product di¤erentiation by assuming demand

uncertainty and costly capacity.

This work shows that IPD in absence of product di¤erentiation may also be explained in

a di¤erent way. More precisely, the paper presents a simple model of pricing (and capacity

choice) for highly perishable goods, assuming that installing capacity is costly and high-

valuation consumers arrive late. Under these premises, it emerges that �rms �nd it optimal

to engage in IPD even if there is no uncertainty concerning the arrivals and there is no

product di¤erentiation. We model a situation where two �rms face a multi-stage Bertrand-

Edgeworth competition game. At the �rst stage, �rms simultaneously produce some units

of a homogeneous good and in the next stages they sell their production to the di¤erent

cohorts of consumers. Due to the di¢ culties in solving the model under this competition

scheme, we have found a solution by assuming a simpler price formation mechanism, bases

on a �ctional auctioneer. Afterwards, we have showed that these results also hold for the

1When �rms supply non-storable goods, production decision precedes the consumers�purchase and de-
mand is uncertain and �uctuating, �rms usually appeal to revenue management techniques (Talluri and
van Ryzin, 2005). These methodologies are now di¤used in some industries such as airlines, hotels, rental
car companies, cruise lines and theatres. The core of revenue management consists of �ve main elements:
forecasting; market segmentation; capacity management; product di¤erentiation; and price discrimination
(Botimer, 1996). The use of computer systems allows �rms to tackle the complexity of the problem and to im-
plement optimizing and quasi-optimizing methodologies to enhance their revenues. When capacity is costly
and marginal costs of production are negligeble, pro�t maximization coincides to revenue maximization. This
explains the use of the term �revenue management�in place of �pro�t management�. Revenue management
methodologies are usually implemented by management science and operational research scholars, but are
also studied by industrial organization researchers interested in the causes of price dispersion.
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Bertrand-Edgeworth game (in some speci�c cases).

The key element of the model is costly capacity. The intuition behind the result is as

follows. As output is not storable and costly, at the �rst stage of the game, �rms limit their

quantities. In the next stages, constrained capacity makes interesting for �rms to sell a share

of their production to low-valuation consumers, in order to have a reduced capacity in the

�nal stages, and to be able to charge high prices to high-valuation consumers. In equilibrium,

it emerges that �rms equalize the shadow marginal cost of capital with the marginal revenue

of each stage.

The model suitably describes the airline industry both in terms of hypotheses and results.

In fact, air passengers are usually classi�ed in low-valuation and high-valuation consumers,

i.e. leisure and business travellers. Moreover, it is known that business travellers prefer to

buy the tickets very close to the departure date, while leisure travellers usually purchase many

days before. In terms of results, we �nd that: (a) �rms intertemporal price discriminate and

price levels increase in approaching the departure date, (b) the pricing structure in oligopoly

mimics that of monopoly case, although business and leisure price levels are lower, (c) in

low-demand periods, if �rms are not allowed to re-size their planes, they o¤er discounted

fares to very-low-valuation consumers (that usually do not purchase).

The economic literature has devoted much attention to the study of oligopolistic envi-

ronments when �rms can set prices with costly capacity. Bertrand�s (1883) model predicted

that prices converge to marginal costs when �rms compete in prices with unconstrained ca-

pacity and product homogeneity. Edgeworth�s (1925) model (further analyzed by Dagupta

and Maskin, 1986) extended the Bertrand contribution showing that, when �rms have ca-

pacity constraints, prices diverge from marginal costs, although in general there are no

equilibria in pure strategies. Later, Kreps and Scheinkman (1983) and Osborne and Pitchik

(1986) demonstrated that capacity precommitment and price competition lead to Cournot

outcomes. Davidson and Deneckere (1986) showed that this result depends on the rationing

rule chosen by the authors, but they con�rmed that capacity constraints, in general, produce

prices above the marginal costs. In a more complicated environment, Yanelle (1989) showed

that non-competitive outcomes may emerge. Some contributions analyzed the Bertrand-

Edgeworth model in a dynamic framework. Dudey (1992) studied when consumers have unit

demands and common reservation value. He showed that, contrary to the static case, the

model has an equilibrium in pure strategies and �rms earn positive pro�ts if their capacity is

not too large. Brock and Scheinkman (1985), Benoit and Krishna (1987) and Davidson and

Deneckere (1990) analyzed the sustainability of collusive agreements in in�nitely repeated

game, when capacity is chosen once and for all. Brock and Scheinkman (1985) demonstrated
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that changes in the number of (capacity constrained) �rms have a non-monotone e¤ect on

the cartel price. Benoit and Krishna (1987) showed that excess capacity is necessary for

collusion and that �rms are not able to sustains monopoly prices even if the discounted

rate is close to one. Davidson and Deneckere (1990) moving from collusive to semi-collusive

equilibria showed that capacity levels and collusion both increase if either interest rates or

the cost of capacity fall.

The remainder of the paper is organized as follows. In Section 2, we present the model.

Sections 3 and 4 analyze the market-clearing and the Bertrand-Edgeworth competition cases,

respectively. Section 5 presents some extensions of the model and some comments on the

airline pricing behaviour. Section 6 concludes the paper. To enhance the readability of this

paper, all proofs are presented in the Appendix.

2 The model

Assume that Z units of a non-storable good are produced at time 0 and that they will be

available at time T . For t 2 T = f1; ::; Tg, di¤erent cohorts of consumers become potentially
interested in buying the good o¤ered on the market. Each cohort can be described by a linear

(inverse) demand function:

Pt (Dt) = P (rt; st;Dt) = rt (1�Dt=st) , (1)

where Dt is the quantity demanded by cohort t 2 T , rt is the the maximal willingness-to-pay
of consumers of cohort t, and st is the market size of cohort t. There are two �rms, named

A and B. Firms sustain a cost c for each unit produced at time 0, but zero cost in selling

the product at time t 2 T . Let be X and Y the production of �rms A and B, respectively;

and X + Y = Z. Firms are free to choose the quantity o¤ered and the price charged at any

time t. Let xt and pt be, respectively, the quantity and the price o¤ered by �rm A at time

t. Similarly de�nitions apply to yt and qt for �rm B. We make the following assumptions

on consumers�behaviour:

1. (Increasing consumer valuation) rs < rt <1, for s < t and s; t 2 T .
2. (E¢ cient rationing rule) Consumers with the highest willingness-to-pay are �rst to be

served.

3. (One visit, at the most) If a consumer belonging to the cohort t is not served, s/he

exits the market (i.e. change the date, the destination, the way of transport, stay at

home, etc..).
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4. (Certainty) The demand is certain.

5. (Viable and unlimited demand for " prices). PT (0) = rT > c, P1 = " with " 2 (0; c),
i.e. r1 = " and s1 =1.

Assumption 1 implies that business travellers rarely buy tickets many day in advance,

while leisure travellers are usually able to purchase many days before the departure date.

Assumption 2 is the e¢ cient rationing rule. Usually two explanations are proposed in order

to explain this rationing scheme. One is that the most interested consumers are the �rst who

get the ticket (Kreps and Scheinkman, 1983). Alternatively, it is assumed that �rms, which

charge lower prices, are interested to sell tickets to the high willingness-to-pay consumers

so that the opponent remains with the less interesting ones (Osborne and Pitchik, 1986).

For this set-up, the �rst interpretation is preferred, since it does not require �rms�strategic

behaviour. A discussion on di¤erent rationing rules is provided by Davidson and Deneckere

(1986). Other rationing schemes (f.e. proportional rationing rule) are at the origin of the

price dispersion, e.g. in the Dana (1999)�s model. Assumption 3 is introduced for technical

reasons and it will be further discussed in the following. To justify this hypothesis, note

that if there is a cost for consumers to visit the store and if they expect increasing prices

in time, they will not visit the market a second time. Assumption 4 is clearly unrealistic

even if forecasting tools can provide good prediction in many industries. Assumption 5 is for

technical reasons. We require that at least one cohort of consumers demand at a price larger

than c, and that the �rst cohort demands in�nite quantity for a very small price. In this

way �rms are sure to sell the all quantity, they produce. To avoid, trivial and unreasonable

results " < c, i.e. it is not pro�table to produce just for cohort 1.

We model a game of perfect information considering two di¤erent cases.

In case I, the timing of the game is as follows:

� (Consumer demand) Nature determines the demand for each cohort.
� (Capacity choice) At time 0, �rms choose X and Y , simultaneously.

� (Allocation choice) At time 0:5, �rms choose (xt)t2T and (yt)t2T , simultaneously.
� (Pricing game) At time 1; 2; ::T , �rms enter the pricing game, where pt and qt are
simultaneously determined.

Case I usually concerns multi-market industries, where production often occurs before

the consumers�arrivals. Here index t does not refer to time but represents di¤erent locations.

However, it is also suitable to describe the airline industry, when capacity allocation is not

dynamically updated.

Alternatively, in case II, the timing of the game is:
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� (Consumer demand) Nature determines the demand for each cohort.
� (Capacity choice) At time 0, �rms choose X and Y , simultaneously.

� (Allocation choice for cohort t) At time t� 0:5, �rms choose xt and yt, simultaneously.
� (Pricing game for cohort t) At time t, �rms enter the pricing game, where pt and qt
are simultaneously determined.

This setup is more closely related to the current airline industry�s behaviour, where

capacity allocation is dynamically updated.

We also consider two di¤erent versions of the �pricing game�. The �rst one is called the

market-clearing competition. Similarly to the Cournot case, at time t, �rms supply their

quantities to consumers and then a �ctional auctioneer computes the market-clearing price.

In this case: pt = qt = Pt (zt), where zt = xt+yt. The second one is the Bertrand-Edgeworth

competition. This set-up was originally investigated by Kreps and Scheinkman (1983) and

Osborne and Pitchik (1986) for the one period game.

It is worth noting that for asymmetric allocations there is no equilibrium in pure strategies

and an equilibrium in mixed strategies occurs, so that a direct computation of the equilibrium

is very complex and out of the goals of this paper. Therefore, in the following of the paper,

our strategy is to �nd the equilibrium outcome under market-clearing competition, and then

to show that it is also an equilibrium outcome under Bertrand-Edgeworth competition (at

least for some special cases).

3 Market-clearing competition

3.1 Monopoly

We start brie�y reviewing the monopoly setup, which present many analogies with the

duopoly case. Results hold for cases I and II.

Proposition 1 Under Assumptions 1-5, if capacity Z is given, then, the monopolist charges
price pmt = 1

2
(rt + �), and sells the quantity zmt = 1

2
st
rt
(rt � �) to those cohorts for which

rt > �, and supplies nothing to those cohorts for which rt � �, where the shadow price of

expanding capacity is � =
�P

t2T̂ st � 2Z
� �P

t2T̂ st=rt
��1
.

A formal proof is provided in appendix. In order to clarify the result, notice that the

monopolist is free to allocate its capacity among di¤erent cohorts. Therefore, s/he will supply
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those cohorts, which provide larger marginal revenue (MR). Since MR1 = P1 = " > 0, the

�rm can gain, at least, " from each unit of capacity.

There are two notable cases depending on the capacity size. When capacity is small,

since MRt (0) = Pt (0) = rt, the monopolist will supply only those segments with the

highest willingness-to-pay. Being the monopolist free to move capacity from one cohort to

the other, marginal revenue will be equalized among the active cohorts. This yields:

MRt (zt) = � for those t such that rt > �,

where � is the shadow price of expanding capacity, i.e. the price that the monopolist would

pay for having an additional unit of capacity. Since marginal revenue is decreasing in zt,

then the larger is Z and the lower will be �.

If the monopolist can choose the size of the plane, it will choose the capacity level, for

which c = �. Therefore:

Corollary 1 Under Assumptions 1-5, a monopolist sets capacity equals to ZM =
P
zMt .

It charges price pMt = 1
2
(rt + c), and sells quantity zMt = 1

2
st
rt
(rt � c), to those cohorts for

which rt > c, and supplies nothing to those cohorts for which rt � c.

3.2 Duopoly

When we move to a strategic environment, it is important to specify which information is

available to a �rm, when it decides on capacity allocation. In case I, a �rm, when chooses how

to allocate capacity, has information only on the overall capacity supplied by the opponent;

therefore it conditions its choice only on time. In di¤erence games�vocabulary, we say that

the �rm is playing an open loop strategy. In case II, a �rm has information not only on the

overall capacity, but also on the capacity allocation of the rival (in previous periods). In this

case, it seems natural to assume that the �rm can use this information to condition their

strategy. In particular, we assume that in any period, the �rm bases its strategy on its and

opponent�s residual capacities and not on the overall history.2 Therefore, in this case, we

say that the �rm plays a closed-loop strategy (or feedback strategy).

We start to solve the model by assuming market-clearing competition. As in the Cournot

model, we have no realistic price-setting mechanism, so that we imagine a �ctional auctioneer

2In this paper, we focus on the Markovian strategies, i.e. those strategies based only on the current
situation (i.e. the residual capacity), but not on the full history (i.e. how the capacity has been allocated in
previous periods). The use of Markovian strategies is a natural choice in this setup as in case II, the history
of the game till a particular time can be summarized by the value of the state variable.
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who sells the total supply by searching for a price that exactly clears the market.

Let (x̂; ŷ) be an equilibrium, if �rms A and B have given capacities X and Y , where

x̂ = (x̂1; ::; x̂T ) and ŷ = (ŷ1; ::; ŷT ). The following lemmas help us to characterize the �rms�

equilibrium outcome. Lemma 1 shows that �rms will want to serve consumers of the richest

cohorts, while Lemma 2 implies that �rms with larger capacity will supply a larger quantity

to each cohort, and to a larger number of cohorts.

Lemma 1 In case I, for t̂ 6= T , if x̂t̂ > 0 then x̂t̂+1 > 0; (similarly, if ŷt̂ > 0 then ŷt̂+1 > 0).

Lemma 2 In case I, if X � Y then �x � �y and xt � yt for every t; and tA � tB, where
tA = mint ft : xt > 0g, tB = mint ft : yt > 0g.

Previous results rest on the fact that to be an equilibrium it is necessary that �rms

equalize their marginal revenue in each market they participate, i.e.:

MRAt (xt + yt) = �x for those t such that MRAt (yt) > �x,

MRBt (xt + yt) = �y for those t such that MRBt (xt) > �y.

Since in the �rst market, a �rm can gain ", for every X and Y , it follows that: �x; �y � ".
Comparing Proposition 1 and Lemmas 1 and 2, we note that the optimal strategies both in

monopoly and in duopoly are similar. When capacity is large with respect to demand, �rms

will o¤er to some customers discounted tari¤s, while when capacity is small, �rms want to

o¤er their products only to the most interested consumers.

Corollary 2 For any X and Y , equilibrium prices are increasing in t.

Note that Corollary 2 ensures that if a consumer belonging to the cohort t is not served,

s/he will not buy in the next periods. This means that the restriction of �only one visit�is

a result of the model and thus, Assumption 3 is not strictly necessary for the analysis.

Proposition 2 describes the equilibrium when capacities are given.

Proposition 2 Under Assumptions 1-5, if �rms A and B have given capacities X; Y > 0

with X � Y , and they play open-loop (case I) or closed-loop strategies (case II), then the
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capacity allocation and prices are given by:

xt =

8><>:
1
3
st
rt
(rt � 2�x + �y) t � tB
1
2
st
rt
(rt � �x) tA � t < tB
0 t < tA

, (2)

yt =

(
1
3
st
rt
(rt � 2�y + �x) t � tB

0 t < tB
, (3)

pct = qct =

8><>:
1
3
(�x + �y + rt) t � tB
1
2
(r + �x) tA � t < tB
p t < tA

, (4)

�x = (S1 + S2 � 2X � Y ) = (R1 +R2) and (5)

�y = (2 (S2 �X)R2 + (S2 � 3Y )R1 + (S1 � 4Y )R2) =
�
2R22 + 2R1R2

�
, (6)

where TA = ftA; ::; Tg, TB = ftB; ::; Tg, S1 =
P

t2TArTB st, S2 =
P

t2TB st, R1 =
P

t2TArTB
st
rt

and R2 =
P

t2TB
st
rt
.

When �rms can choose their capacities, the following result emerges.

Corollary 3 Under Assumptions 1-5, when �rms can freely choose X and Y , then:

xCt = yCt =

(
1
3
st (1� c=rt) if rt � c

0 if rt < c
, (7)

pCt = qCt =

(
1
3
(2c+ rt) if rt � c
0 if rt < c

, (8)

and XC = Y C =
PT

t=1 x
C
t .

Assume that capacities are already given. To be an equilibrium, �rms want to allocate

the capacity in such a way to equate their marginal revenue in each market. Hence, in the

investment decision, the capacity choice is obtained by equating the marginal revenue to the

marginal cost. Market-clearing competition produces a situation in which marginal revenue

is c (the shadow cost of capital) for every cohort of consumers, and coincides with marginal

costs. In this case, �rms have no incentives to increase their o¤er to a cohort and to reduce

their o¤er to another. Hence, �rms choose the Cournot quantities for each cohort of con-

sumers. This setup is similar to the multi-market game described by Anderson and Fischer

(1989). As they noted, the emergence of Cournot outcomes relies on the hypothesis of linear
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demand. Assuming di¤erent functional forms usually yield to di¤erent results. Anderson

and Fischer (1989) have showed that a deviation from the Cournot capacity occurs when two

simultaneous conditions realize: �rst, �rms �wish�to modify capacities, and, second, �rms

have the �ability�to induce a change in the quantity supplied by the opponent. In our setup,

the �rst condition is satis�ed since some markets are more pro�table than others (rt 6= rs

with t 6= s), but the second condition does not hold due to the linearity of demand.

4 Bertrand-Edgeworth competition

In this section we provide an explicit model of price formation without recurring to the

auctioneer. However, the use of Bertrand-Edgeworth competition reduces the tractability

of the model. Even in the static case, when capacities are not symmetric, there is no

equilibrium in pure strategies but only in mixed strategies. Additional di¢ culties come from

the fact that even with linear demand, the marginal revenue is not only discontinuous but

also not monotonic. Dasgupta and Maskin (1982) establish the existence for the case of

linear demand and constant marginal costs. Davinson and Deneckere (1990) computed the

expected revenue for the linear demand with r = s = 1. In Appendix, we present the same

results for generic values of r and s. In a single period game (T = 1), the market clearing

competition as well as the Bertrand-Edgeworth competition yields to the same results, i.e.

the Cournot outcome (Kreps and Scheinkman, 1983): x = y = s (1� c=r) =3. When T = 2,
thanks to Assumption 5, the equilibrium outcome is the same of Cournot.

Proposition 3 For cases I and II, under assumptions 1 � 5, when T = 2, the equilibrium
outcomes of the Bertrand-Edgeworth competition and of the market-clearing competition co-

incide.

To solve the problem in a more general situation, we start from the solution of the

market-clearing competition and we show that it is a solution also under Bertrand-Edgeworth

competition. We provide a proof of the equivalence of the pricing strategies in two, even not

perfectly satisfactory, ways. The �rst result is obtained by assuming an equilibrium concept

weaker than the Nash, i.e. the local Nash equilibrium. Second, the equivalence is tested by

simulation for a wide range of parameters. In both cases, we verify that when �rm A has

chosen XC , �rm B has no incentive to change its capacity from Y C and that outcomes of

the game coincide with those obtained under the market-clearing competition. With this

procedure is not possible to guarantee that the equilibrium is unique.
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4.1 Local Nash equilibrium

Rothschild and Stiglitz (1976) introduced the concept of local Nash equilibrium. A solution

pro�le is a local Nash equilibrium if players have no incentive to unilaterally deviate in the

nearness of the solution pro�le. Thus, the equilibrium is resistant to small deviations, but

not necessarily to large ones. In words, a local Nash equilibrium is a strategy pro�le such

that no player has an incentive to deviate to a similar close strategy. This implies that each

player is using a local maximum of his payo¤ function given the strategies of other player.3

Proposition 4 For cases I and II, under assumptions 1 � 5, the equilibrium outcome of

the market-clearing competition is a local equilibrium outcome of the game under Bertrand-

Edgeworth competition.

4.2 Simulation

We have also investigated the existence of global Nash equilibria. By simulation, we �nd

that for the parameters�range investigated local equilibria are also global. Simulated results

are con�ned to the case T = 2 a and we have removed Assumption 5 in order to have

two standard linear demand functions. We investigate the equilibrium only in case I.4 In

particular, we have computed the optimal values of xt, yt, X and Y by Corollary 3, for some

values of c, st and rt, and then we have tested whether �rm B has an incentive to deviate

from the equilibrium providing a larger or a smaller capacity. For each capacity choice of B,

we have �nd the optimal allocation for A and B. The result is obtained by modifying the

capacity Y from 0 to the double of the Cournot solution, and then computing the equilibrium

using (9).

We have chosen the following parameters: c = 0:1, r1; r2 2 [1; 3] and s1; s2 2 [1; 3].

We have also done random proofs for di¤erent parameters values all bringing to additional

con�rmation of the equivalence result. By simulation, we have positive conclusions that the

outcome under the market clearing competition produce a similar outcome in the Bertrand-

Edgeworth competition, even if we are not able to infer that it is the unique equilibrium.

3For a discussion on the existence of a global Nash equilibrium in pure strategies, see: Zied (2003).
Bonanno (1996), Sened (1996). Scho�eld and Sened (2002) provide a brief justi�cation on the use of a local
Nash equibrium in games. Alós-Ferras and Ania (2001) provide a formal de�nition of local Nash equilibrium.

4Although the two situations seem similar since by choosing X and x1 the capacity allocated is auto-
matically determined: x2 = X � x1; however, since in the Bertrand-Edgeworth competition the quantity
sold does not necessarily coincides with the quantity charged, the simulation results only refer to the case I,
where the unsold capacity of the �rst period can not be o¤ered in the second one.
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By simulation, we have also computed the capacity allocations using capacity choices,

which di¤er from Cournot outcome. As expected, when the capacity is smaller than Cournot

outcome, the equilibrium is that proposed in Proposition 2, while when there are large

capacities for one or both carriers, the Edgeworth-Bertrand outcome substantially di¤ers

from the market-clearing equilibrium and asymmetric and multiple allocations emerge. The

explanation is quite simple. See, Equation (9). When capacities of both �rms in the same

market are large (Region D), then �rms behave as in a Bertrand game, so that they realize

zero pro�ts. To do better, �rms have to choose asymmetric allocations, which produce

positive returns, even if smaller than the Cournot ones.

The result changes when re-introducing Assumption 5. In fact, when capacities are large,

carriers sell a share of their production to low-valuation consumers at low prices in order to

be able to supply Cournot quantities to high-valuation consumers.

5 Pricing behaviour of airline carriers

We now use the results presented in Sections 3 and 4 to interpret the behaviour observed in

the airline industry.

5.1 Pricing behaviour in practice

As widely investigated, pricing behaviour in legacy and low cost carriers present many di¤er-

ences but also some analogies. Legacy carriers organize seats into reservation classes. Each

class refers some product characteristics, called ticketing restrictions (such as cabin, priority

check-in, ticket refundability, advance purchase restrictions, valid travel days, or stay restric-

tions). Usually, classes are hierarchically organized, meaning that they are ordered from the

highest fare to the lowest one. When carriers decide capacity allocation they usually use a

nested system. They reserve x1 seats for class 1 (i.e. the lowest class), x2 > x1 seats for class

1 and 2 jointly, and so on and so forth. When the tickets sold to class 2 exceed x2�x1, then
seats available for class 1 decrease accordingly. When the available seats for a class end, the

class is closed. Alternatively, less sophisticated management strategies allocate capacity to

separate classes. Consumers, when buying a ticket, faces di¤erent fares which correspond

to di¤erent classes. The use of classes allows carriers to implement both intertemporal and

product di¤erentiation simultaneously. Selling tickets with identical characteristics implies

that only lowest available class is bought, but due to product di¤erentiation travellers can

also be interested in paying higher fares. Our model assumes that product is homogeneous
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so that consumers will always pay the cheapest available fare. When carriers set the capacity

once and for all, we are in Case I, while when capacity can be adjusted we are in case II

of our model. Clearly, dynamic capacity allocation can be a response to the competitor

behaviour or to cope with unforecast demand variations. This last aspect is not captured

by the model, which assume certain demand.

The low-cost carriers�pricing behaviour is quite di¤erent from that of legacy carriers as

they employ a price setting procedure based on the departure date and on the number of

occupied seats. Usually, they increase the price in the period approaching the departure

date and depending on the observed load factor. Product, in this case homogeneous, is so

that low-cost carriers�are only involved in temporal product discrimination.

The main analogy between the two pricing behaviours is on the fact that in both cases

carriers�decisions is a price-quantity choice (as in the Edgeworth-Bertrand model).

5.2 Price setting: monopoly vs oligopoly

The main e¤ect of (simultaneous) Bertrand-Edgeworth competition is that there is no mar-

ginal cost pricing, even if �rms compete in price, since capacity is limited.

Without capacity constraints, under Assumptions 1-5, the monopoly pricing behaviour

remains that predicted in Corollary 1, but duopoly pricing would be pt = qt = c for every

cohort of consumers, a result quite di¤erent from that observed in real markets. Limited

capacity, indeed, allows for explaining similar pricing pattern emerging both in monopoly

and in duopoly environments. In table 1, we show the average fares per class of service

in monopoly and duopoly, on two-way international �ights in Europe in 2004 (based on

a sample of 15 O-D destinations and the 4 main European legacy carriers) computed in

Alderighi et al. (2004).

Table 1: Average fares per class of service (euros).
Class of service Monopoly Duopoly

Promotional 183 169

Discounted1 305 266

Discounted2 395 350

Economy1 490 441

Economy2 607 557

Unrestricted1 893 780

Unrestricted2 977 883
(Alderighi et al., 2004)
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The pricing patterns for monopoly and duopoly are similar, although monopoly fares are

higher the duopoly ones.5 The result is qualitative similar to those predicted by Corollary

1 and Corollary 3. In particular, since lower classes (Promotional, Discounted) are closed

before the others (Economy, Unrestricted), then prices are increasing in approaching the

departure date (Lemma 1).

But, why carriers will sell tickets to cohorts of consumers with lower willingness-to-pay

without waiting for higher-valuation consumers? The result rests on the type of competition.

If carriers remain with large capacity for higher classes, they will not able to charge high

fares to these cohorts of consumers, since pricing competition produces Bertrand-like results.

On the contrary, by allocating part of their capacity to the lower classes, they are able to

remain with the right capacity to obtain a Cournot-like result.

In Borenstein�s (1985) and Holmes�(1989) papers, it is assumed that there are di¤erent

consumers�groups and products are di¤erentiated (di¤erent departure date, service, etc..), so

that carriers can segment consumers on the basis of the elasticity market demand (monopoly-

type discrimination) and on cross-elasticity of demand (competitive-type discrimination). In

this setup, we have assumed that products are homogeneous so that competitive-type dis-

crimination is not possible. This fact explains the reason why, in this setup, price dispersion

is larger in monopoly than in duopoly.

5.3 Systematic peak-load pricing

Until now, we have assumed that �rms are able to choose the �Cournot�capacity for a given

demand level and theoretical pricing patterns match the observed ones. Quite interestingly,

Proposition 2 is useful to show that �rms, even if capacities are set once and for all, can

sustain a pricing pattern that is similar to empirical observations.

The reasoning is analogous to the argument presented in previous paragraph. When

demand is low with respect to capacity, since the shadow cost of a seat is small, carriers

will allocate capacity to discount classes, to be able to set high fares to high-evaluation

consumers and to not incur in the Bertrand trap. When demand is high, carriers will not

allocate capacity to discount classes but only to high classes.

This e¤ect, previously identi�ed by Borenstein and Rose (1994), was called �systematic

peak-load pricing�.

5Similar results concerning the low cost carriers are presented in Bachis and Piga (2006).
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6 Conclusions

This paper has presented a simple model of pricing that allows to explain some regularities

observed in the airlines behaviour: (a) �rms intertemporal price discriminate and price levels

increase in approaching the departure date, (b) the pricing structure in oligopoly mimics that

of monopoly case, although business and leisure price levels are lower, (c) in low-demand

periods, if �rms are not allowed to re-size their planes, they o¤er discounted fares to very-

low-valuation consumers (that usually do not purchase).

It show that these results are due to the nature of competition. Even if �rms compete in

prices, capacity constrains limit the Bertrand-like outcomes, making the model predictions

in line with Cournot setup.

This paper also provides a justi�cation of the use of revenue management techniques

(usually developed in monopoly) in oligopolistic markets, by making the role of capacity

explicit.

The model is based on many ad hoc assumptions, and some of these have important

e¤ects on the results.6 However, although conscious that the dynamic competition probably

produces di¤erent results from those of Cournot, we think that this paper provides some

insights on the eventuality that Cournot-like results may occur.

7 Appendix

7.1 Bertrand-Edgeworth pricing game

This result is directly derived from Davidson and Deneckere (1990). Demand is given by P (r; s; q) = r (1�D=s), and

capacity supplied by �rms are x and y. For each pair (x; y) the one-shot price-setting game with capacity constraints

has a unique static Nash equilibrium given by (9):

RX (r; s;x; y) =

8>>>>>>>>><>>>>>>>>>:

rx (s� (x+ y)) =s (x; y) 2 A
1
4
r (s� y)2 =s (x; y) 2 BX [ CX

rx (s� x)2 = (4sy) (x; y) 2 BY
1
2
rx
�
s�

p
x (2s� x)

�
=s (x; y) 2 CY

0 (x; y) 2 D

, (9)

6For example, the linearity of demand function makes the static and the dynamic Cournot game outcomes
identical limiting the strategic e¤ect of increasing capacity (Anderson and Fischer, 1989); or the e¢ cient
rationing rule assumption permits the Cournot outcome of the Bertrand-Edgeworth game, while under other
rationing rules it may di¤er (Davidson and Deneckere, 1986).
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where A =
�
(x; y) : y � 1

2
(s� x) ^ x � 1

2
(s� y)

	
, BX =

n
(x; y) =2 A : x � 1

2

�
s+

p
y (2s� y)

�
^ x � y

o
, BY =n

(x; y) =2 A : y � 1
2

�
s+

p
x (2s� x)

�
^ x < y

o
, D = f(x; y) : x; y � sg, CX = f(x; y) =2 A [BX [D, x > yg, and

CY =
�
(x; y) 2 <2+ : (x; y) =2 A [BY [D, y > x

	
.

And similarly for �rm B.

7.2 Proofs

Proof. of Proposition 1. (Case I) The monopolist faces the following problem:

max
fz1;::;zT g

P
t2T Pt (zt) zt s.t. Z �

P
t2T zt and zt � 0. (10)

We form the Lagrangian: L =
P

t2T Pt (zt) zt � �
�P

t2T zt � Z
�
� �tzt

First order conditions imply that: rt (1� 2zt=st) = � + �t. Hence: zt =
1
2
st
rt
(rt � �� �t). Note that �t = 0,

when zt > 0; and �t > 0 when � < rt. De�ne t̂ = mint ft : zt > 0g. From Assumption 1, for t̂ 6= T , zt̂ > 0 implies

zt̂+1 > 0. De�ne T̂ =
�
t̂; ::; T

	
. Since, Z =

P
t2T̂ zt, then: � =

�P
t2T̂ st � 2Z

� �P
t2T̂ st=rt

��1
. Assumption 5

ensures that � > 0, and therefore all the capacity is allocated. Finally, pt = Pt (zt) =
1
2
(rt + �) if t 2 T̂ . By the

contrary, the monopolist is free to charge whatever price to cohorts, which are not served.

(Case II) The solution is the same of Case I. To show this note that, the maximization problem in (10) is

equivalent to:

maxP (Zt � Zt�1) (Zt � Zt�1)� � (Zt � Zt�1) ,

s.t. Z1 = 0, ZT � 0, Zt+1 = Zt � zt and (Zt � Zt�1) � 0,

which has the same solution of the previous problem.

Proof. of Lemma 1. (Case I) First note that, in general, MRAt (xt + yt) R MRBt (xt + yt) , xt Q yt. We

prove it by contradiction. Assume that exists another equilibrium, namely (~x; ~y), such that ~xt > 0 and ~xt̂ = 0. It

means that:

MRAt (~xt + ~yt) > MR
A
t̂ (~yt̂) , (11)

and hence ~yt̂ > 0. Now, if ~yt = 0 then MRBt > MRBt̂ and thus �y > �x. But it is a contradiction as from the

assumption MRAt > MR
A
t̂ (~yt̂) and thus �x > �y. Now consider the case where ~yt > 0, and hence:

MRBt =MR
B
t̂ . (12)

Subtracting the double of (12) from (11) and using (1), we obtain: rt (1� 3~xt=st) � rt̂, which is a contradiction.

Proof. of Lemma 2. Straightforward.

Proof. of Proposition 2. (Case I) Firm A faces the following problem (and similarly for B.):
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max
fx1;::;xT g

P
t2T Pt (xt + yt)xt s.t. X �

P
t2T xt and xt � 0. (13)

We form the Lagrangian:

L =
P

t2T Pt (xt + yt)xt � �x
�P

t2T xt �X
�
� �txt

First order conditions imply that: rt (1� (yt + 2xt) =st) = � + �t. Hence: xt =
1
2
st
rt
(rt � �� �t) � 1

2
yt. Note

that �t = 0, when xt > 0; and �t > 0 when �x < P (yt). From Lemma 1, it is easily to show that tA � tB . Since,

X =
P

t2TA xt, and Y =
P

t2TB Yt then:

1

3
S2 �

2

3
�yR2 +

1

3
�xR2 = Y

1

2
S1 �

1

2
�xR1 +

1

3
S2 �

2

3
�xR2 +

1

3
�yR2 = X

Solving the system for �x and �y yield (5) and (6). Assumption 5 ensures that �x and �y > 0, and therefore all

the capacity is allocated. Finally, pt = Pt (xt + yt).

(Case II) The solution is the same of Case I. To show this note that, the maximization problem in (13) is

equivalent to:

maxP (Xt �Xt�1 + yt) (Xt �Xt�1)� � (Xt �Xt�1) ,

s.t. X1 = 0, XT � 0, Xt+1 = Xt � xt and (Xt �Xt�1) � 0.

Proof. of Proposition 3. Backward induction can be applied to �nd the outcome of the game, as there is

perfect information. The analysis of the sub-game starting after capacity choice is similar to that of Kreps and

Scheinkman (1983) by replacing the capacity choice of the static game with the allocation choice for the second

cohort. Payo¤s of A are " (X � x2) +RX (r; s;x2; y2) and analogously for B. Since in the �rst market, the marginal

revenue is lower than the marginal cost, �rms can be induced to install a capacity larger than the Cournot quantity

only if it has a strategic e¤ect on the behaviour of the opponent. Not this the case, the outcome of the game is the

Cournot one.

Proof. of Proposition 4. Provided that c > 0 then looking at equation (2), it emerges that for small deviations

from the equilibrium, the allocations remains in region A. This means that the game is in the same situation of the

market-clearing competition, then the problem is the same as that described in Corollary 3.

References

[1] Alderighi, M. (2007) Nonlinear pricing in asymmetric duopoly. Australian Economic

Papers, 46, 205�223.

17



[2] Alderighi, M., Cento, A., Nijkamp P. and Rietveld, P. (2004) The Entry of Low-Cost

Airlines: Price Competition in the European Airline Market. Tinbergen Institute Dis-

cussion Paper No. TI 04-074/3.

[3] Alós-Ferras, C., Ania, A.B. (2001) Local equilibria in economic games. Economics Let-

ters 70, 165�173.

[4] Anderson S. P. and R. D. Fischer (1989) Multi-Market Oligopoly with Production Before

Sales. The Journal of Industrial Economics 38, 167�182.

[5] Armstrong, M. and Vickers, J. (2001) Competitive price discrimination. Rand Journal

of Economics, 32, 579�605.

[6] Bachis, E. and Piga, C. (2006) On-line price discrimination with and without arbitrage

conditions. Mimeo.

[7] Benoit J.P., Krishna V. (1987) Dynamic Duopoly: Prices and Quantities. Review of

Economic Studies 54, 23�35.

[8] Bertrand, J. (1883) Review of �Théorie Mathématique de la Richesse Sociale� and

�Recherches sur le Principes Mathématiques de la Théorie des Richesses�. Journal des

Savants, 48, 499-508.

[9] Bonanno, G. (1988) Oligopoly Equilibria When Firms Have Local Knowledge of De-

mand. International Economic Review 29, 45�55.

[10] Borenstein, S. (1989) Hub and high fares: dominace and market power in the U.S.

airline industry. Rand Journal of Economics, 20, 344�365.

[11] Borenstein, S. and Rose, N.L. (1994) Competition and price dispersion in the U.S.

airline industry. Journal of Political Economy 102, 653�683.

[12] Botimer, T.C. (1996) E¢ ciency considerations in ariline pricing and yield management.

Transportation Research: Part A, 30, 307�317.

[13] Brock W.A. and Scheinkamn J.A. (1985) Price setting supergames with capacity con-

straints. Review of Economic Studies 52, 371�382.

[14] Clerides, S. K. (2004) Price Discrimination with Di¤erentiated Products: De�nition and

Identi�cation. Economic Inquiry 42, 402�412.

18



[15] Dana, J.D. Jr. (1998) Advance-purchase discounts and price discrimination in compet-

itive markets. Journal of Political Economy, 106, 395�422.

[16] Dana, J.D. Jr. (1999) Equilibrium price dispersion under demand uncertainty: the roles

of costly capacity and market structure. Rand Journal of Economics, 30, 632�660.

[17] Dasgupta, P. and Maskin, E. (1986) Existence of Equilibrium in Discontinuous Eco-

nomic Games, I: Theory and II: Applications. Review of Economic Studies, 53, 1�26

and 27�41.

[18] Davidson, C. and Deneckere, R. (1986) Long-run competition in capacity, short-run

competition in price, and the Cournot Model. Rand Journal of Economics, 17, 404�415.

[19] Dessein W. (2003) Network competition in nonlinear pricing. Rand Journal of Eco-

nomics 34, 593�611.

[20] Edgeworth, F.Y. (1929) The pure theory of monopoly, in Edgeworth, Papers relating

to political economy, Vol I, New York: Burt Franklin.

[21] Hayes Y.H., Ross L.B. (1998) Is airline price dispersion the result of careful planning

or competitive forces? Review of Industrial Organization 13, 523�541.

[22] Holmes, T.J. (1989) The e¤ects of third-degree price discrimination in Oligopoly. Amer-

ican Economic Review 79, 244�250.

[23] Katz, M.L. (1984) Firm-speci�c di¤erentiation and competition among multiproduct

�rms. Journal of Business, 57: S149�S166.

[24] Kreps, D. M. and Scheinkman, J. (1983) Quantity Precommitment and Bertrand Com-

petition Yield Cournot Outcomes. Bell Journal of Economics, 14, 326�37.

[25] Krouse, C. G. (1990) Theory of Industrial Economics, New York: Basil Blackwell.

[26] Osborne, M.J. and Pitchik, C. (1986) Price compatition in a capacity-constrained

duopoly. Journal of Economic Theory 38, 238�260.

[27] McMillan J. and Rothschild M. (1994) Search, Handbood of Game Theory, Vol. 2, R.J.

Aumann and S. Hart (eds.), Elsevier.

[28] Rochet, J.C. and Stole, L.A. (2002) Nonlinear pricing with random participation.Review

of Economic Studies, 69, 277�311.

19



[29] Scho�eld, N., Sened, I., 2002. Local Nash equilibrium in multiparty politics. The Annals

of Operations Research 109, 193�210.

[30] Sened, I., 1996. A model of coalition formation: Theory and evidence. Journal of Politics

58, 370�392.

[31] Stavins J. (2001) Price discrimination in the airline market: the e¤ect of market con-

centration, Review of Economics and Statistics 83, 200�202.

[32] Talluri, K.T. and van Ryzin, G.J. (2005) The theory and practice of revenue manage-

ment, Springer, New York.

[33] Yanelle, M.O. (1989) The Strategic Analysis of Intermediation. European Economic

Review, 33, 249�301.

20


